The existence and construction of rational Gauss-type quadrature rules

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence and construction of rational Gauss-type quadrature rules

Consider a hermitian positive-definite linear functional F, and assume we have m distinct nodes fixed in advance anywhere on the real line. In this paper we then study the existence and construction of nth rational Gauss-Radau (m = 1) and Gauss-Lobatto (m = 2) quadrature formulas that approximate F{f}. These are quadrature formulas with n positive weights and with the n−m remaining nodes real a...

متن کامل

Gauss-type Quadrature Rules for Rational Functions

When integrating functions that have poles outside the interval of integration, but are regular otherwise, it is suggested that the quadrature rule in question ought to integrate exactly not only polynomials (if any), but also suitable rational functions. The latter are to be chosen so as to match the most important poles of the integrand. We describe two methods for generating such quadrature ...

متن کامل

Rational Gauss Quadrature

The existence of (standard) Gauss quadrature rules with respect to a nonnegative measure dμ with support on the real axis easily can be shown with the aid of orthogonal polynomials with respect to this measure. Efficient algorithms for computing the nodes and weights of an n-point Gauss rule use the n × n symmetric tridiagonal matrix determined by the recursion coefficients for the first n orth...

متن کامل

Calculation of Gauss Quadrature Rules

Several algorithms are given and compared for computing Gauss quadrature rules. It is shown that given the three term recurrence relation for the orthogonal polynomials generated by the weight function, the quadrature rule may be generated by computing the eigenvalues and first component of the orthornormalized eigenvectors of a symmetric tridiagonal matrix. An algorithm is also presented for c...

متن کامل

Generalized anti-Gauss quadrature rules

Abstract. Gauss quadrature is a popular approach to approximate the value of a desired integral determined by a measure with support on the real axis. Laurie proposed an (n+1)-point quadrature rule that gives an error of the same magnitude and of opposite sign as the associated n-point Gauss quadrature rule for all polynomials of degree up to 2n + 1. This rule is referred to as an anti-Gauss ru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2012

ISSN: 0096-3003

DOI: 10.1016/j.amc.2012.04.008